Responses of deciduous broadleaf trees to defoliation in a CO2 enriched atmosphere.
نویسندگان
چکیده
Relatively little is known about the implications of atmospheric CO2 enrichment for tree responses to biotic disturbances such as folivory. We examined the combined effects of elevated CO2 concentration ([CO2]) and defoliation on growth and physiology of sugar maple (Acer saccharum Marsh.) and trembling aspen (Populus tremuloides Michx.). Seedlings were planted in the ground in eight open-top chambers. Four chambers were ventilated with CO2-enriched air (ambient + 283 micromol mol-1) and four chambers were supplied with ambient air. After 6 weeks of growth, half of the leaf area was removed on a subset of seedlings of each species in each CO2 treatment. We monitored subsequent biomass gain and allocation, along with leaf gas exchange and chemistry. Defoliation did not significantly affect final seedling biomass in either species or CO2 treatment. Growth recovery following defoliation was associated with increased allocation to leaf mass in maple and a slight enhancement of mean photosynthesis in aspen. Elevated [CO2] did not significantly affect aspen growth, and the observed stimulation of maple growth was significant only in mid-season. Correspondingly, simulated responses of whole-tree photosynthesis to elevated [CO2] were constrained by a decrease in photosynthetic capacity in maple, and were partially offset by reductions in specific leaf area and biomass allocation to foliage in aspen. There was a significant interaction between [CO2] and defoliation on only a few of the measured traits. Thus, the data do not support the hypothesis that atmospheric CO2 enrichment will substantially alter tree responses to folivory. However, our findings do provide further indication that regeneration-stage growth rates of certain temperate tree species may respond only moderately to a near doubling of atmospheric [CO2].
منابع مشابه
Interaction of ice storms and management practices on current carbon sequestration in forests with potential mitigation under future CO2 atmosphere
[1] Ice storms are disturbance events with potential impacts on carbon sequestration. Common forest management practices, such as fertilization and thinning, can change wood and stand properties and thus may change vulnerability to ice storm damage. At the same time, increasing atmospheric CO2 levels may also influence ice storm vulnerability. Here we show that a nonintensively managed pine pla...
متن کاملContinuous measurements of net CO2 exchange by vegetation and soils in a suburban landscape
[1] In a suburban neighborhood of Minneapolis–Saint Paul, Minnesota, USA, we simultaneously measured net CO2 exchange of trees using sap flow and leaf gas exchange measurements, net CO2 exchange of a turfgrass lawn using eddy covariance from a portable tower, and total surface-atmosphere CO2 fluxes (FC) using an eddy covariance system on a tall tower. Two years of continuous measurements showed...
متن کاملInduced accumulation of phenolics and sawfly performance in Scots pine in response to previous defoliation.
Phenolic compounds often accumulate in foliar tissues of deciduous woody plants in response to previous insect defoliation, but similar responses have been observed infrequently in evergreen conifers. We studied the effects of defoliation on the foliar chemistry of Scots pine (Pinus sylvestris L.) and cocoon mass, and survival of the pine sawfly (Diprion pini L.). In two successive years, needl...
متن کاملThe longevity of broadleaf deciduous trees in Northern Hemisphere temperate forests: insights from tree-ring series
Citation: Di Filippo A, Pederson N, Baliva M, Brunetti M, Dinella A, Kitamura K, Knapp HD, Schirone B and Piovesan G (2015) The longevity of broadleaf deciduous trees in Northern Hemisphere temperate forests: insights from tree-ring series. Front. Ecol. Evol. 3:46. doi: 10.3389/fevo.2015.00046 The longevity of broadleaf deciduous trees in Northern Hemisphere temperate forests: insights from tre...
متن کاملEstimating CO2 Sequestration by Forests in Oita Prefecture, Japan, by Combining LANDSAT ETM+ and ALOS Satellite Remote Sensing Data
CO2 sequestration of the forests in Oita Prefecture, Japan, was estimated using satellite remote sensing data. First, hybrid classification of the optical LANDSAT ETM+ data was performed using GIS to produce a detailed land cover map. CO2 sequestration for each forest type was calculated using the sequestration rates per unit area multiplied by the forest areas obtained from the land cover map ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Tree physiology
دوره 22 7 شماره
صفحات -
تاریخ انتشار 2002